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Abstract 

Compound interest calculations are used in most financial transactions concerning 

loans and investments. Of special interest, is calculating the time it takes a 

principal to double at a certain compound interest rate. This article starts by 

discussing the famous Rule of 70 (or 72) that gives a simple estimate of the 

doubling time under compound interest. The Rule of 70 is then extended to 

estimate the time for a principal to grow to a higher fold (triple, quadruple, etc.) 

under compounding. Finally, this article shows that doubling time (or to higher 

folds) calculations were carried out in antiquity as evidenced by many excavated 

ancient cuneiform texts from Mesopotamia (c. 2000 BCE).   

 

Mathematics Subject Classification: 91G30; 01A17 

Keywords: Babylonian mathematics; cuneiform; m-fold time rules; rule of 70 

1 College of Business Administration, Alabama State University, Montgomery, AL. USA. 
E-mail: sbakir@alasu.edu 

 
Article Info: Received: May 12, 2016. Revised: June 14, 2016.  
           Published online : September 1, 2016. 
 

                                                 

mailto:sbakir@alasu.edu


2                                     Compound Interest Doubling Time Rule  

1  Introduction  

Interest bearing accounts can grow by earning interest according to the 

simple interest method or to the compound interest method. In the simple interest 

method, the interest is paid on the initial investment (the principal) only, not on 

the interest earned over time. In the compound interest method, the interest is paid 

on the principal and on the interest accrued over time. Thus, compound interest is 

called “interest on the interest.” While compound interest is used in most banking 

and financial transactions such as in saving accounts and loan repayments, simple 

interest is used in some short-term financial transactions.  

 Although compound interest is currently a driving force in most modern 

economies, it is by no means a modern invention. Cuneiform text tablets from the 

Sumerian period (ca. 2600-2350 BCE) and from the Old Babylonian period (ca. 

2000-1600 BCE) showed concrete evidence of compound interest calculations for 

transactions between individuals and between city states. Some of those ancient 

examples demonstrate calculations of the time (doubling time) it takes a principal 

to double (or grow to higher folds) under compounded interest.  

The doubling time of a principal is still of interest in our modern days. The 

present-day rule of 70 states that it will take 70
100𝑟

 years for a principal to double 

at an annual compound interest rate of r (as a decimal). Thus at 5% annual interest 

rate, a principal doubles in 70
5

= 14 years.  

In this article, we discuss the exact and approximate doubling time rules 

under compound interest. Then we derive exact and approximate mathematical 

extensions for calculating the times for a principal to triple, quadruple, quintuple, 

etc., under compound interest. Two interesting examples from antiquities are 

presented to demonstrate the early history of compound interest calculations. 
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2  Preliminary Notes 

For the benefit of the reader, we give the basic terminology and formulae 

regarding present-day mathematics of compound interest: 

P = the initial principal (or present value) that is invested,  

r = annual interest rate expressed in decimal form. In percent form, 100r% is 

called the annual percentage rate (APR). 

n = frequency of compounding periods per year. For example, n = 1, 2, 4, 12, 

52, and 365  corresponds to annual, semi-annual, quarterly, monthly, weekly, and 

daily compounding, respectively. Also n  = 1/2, 1/3, 1/4, 1/5, and 1/10 

corresponds to compounding every two years (biannual), every three years 

(triennial), every four years (quadrennial), every five years (quinquennial), and 

every 10 years (decennial). An ancient history example of compounding once every 

five years is presented in this paper. 

t = time of investment in years, 

F = future value of the principal P, and 

I = total accrued interest.  

The basic compound interest formulae are 

 1
ntrF P

n
 = + 
 

           (1) 

 PFI −= ,            (2) 

For continuous compounding (i.e., when 𝑛 → ∞  ), the basic formula becomes 

𝐹 = 𝑃 lim
𝑛→∞

�1 + 𝑟
𝑛
�
𝑛𝑡

= 𝑃 �lim𝑛→∞ �1 + 𝑟
𝑛
�
𝑛
�
𝑡

= 𝑃[𝑒𝑟]𝑡 = 𝑃𝑒𝑟𝑡.  (3) 

The simple interest method has two main formulae: 𝐹 = 𝑃(1 + 𝑟𝑡) and = 𝑃𝑟𝑡 .  
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3  The m-Fold Exact Time Rule  

The question at hand is “How long does it take a principal to grow m-folds at 

an annual interest rate of r and a compounding frequency of n times per year?”  

Solution: Substitute F = mP in formula (1) to obtain 

 𝑚𝑃 = 𝑃 �1 + 𝑟
𝑛
�
𝑛𝑡

 

 𝑚 = �1 + 𝑟
𝑛
�
𝑛𝑡

 

 ln𝑚 = 𝑛𝑡 ln �1 + 𝑟
𝑛
� 

 𝑛𝑡 = ln𝑚

ln�1+𝑟𝑛�
    in compounding periods. 

In number of years, the m-fold exact time compounding formula is 

 𝑡 = ln𝑚

nln�1+𝑟𝑛�
     in years.         (4)  

For continuous compounding, the m-fold exact time formula can be derived from 

(3) as follows: 

𝐹 = 𝑃𝑒𝑟𝑡 

𝑚𝑃 = 𝑃𝑒𝑟𝑡 

𝑚 = 𝑒𝑟𝑡 

ln𝑚 = 𝑟𝑡 ln 𝑒 

ln𝑚 = 𝑟𝑡 

 𝑡 = ln𝑚
𝑟

      in years.          (5) 

Note that the value of m can be equal to 1.5 if one requires the time for a principal to 

grow by 50%. Of special interest is when m = 2, which leads to the doubling exact 

time formula 

 𝑡 = ln 2

𝑛 ln�1+𝑟𝑛�
    in years         (6) 

For continuous compounding, the doubling exact time formula becomes 
 𝑡 = ln 2

𝑟
   in years.           (7) 
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4  The m-Fold Approximate Time Rules  

Instead of using the doubling exact time in formula (6) that requires 

logarithmic calculations, present-day financiers use a simple rule (the rule of 70) 

to approximate the required doubling time under compound interest. The rule of 

70 states that at an annual interest rate of r (in decimal form), a principal doubles 

in 70
100𝑟

 years.  Thus, at a 7% APR, money doubles in 70
7

= 10  years. 

Sometimes people prefer using 72 instead of 70 because 72 has more divisors than 

does 70.  The 72 double-your-money rule becomes 72
100𝑟

. We will extend the rule 

of 70 (or 72) to rules that give the approximate time for a principal to grow 

m-folds (triple, quadruple, etc.). 

 Suppose that a principal  P is invested at an annual interest rate of r (in 

decimal) compounded at a frequency of n > 0. It is required to determine the 

approximate time for the principal to grow m-folds, i.e., becomes mP, where 

𝑚 ≥ 1. 

Recall the m-fold exact time formula in (4), = ln𝑚

nln�1+𝑟𝑛�
 . 

Using the Maclaurin's series expansion (see any calculus book), we get  

( ) ( ) ( ) ( )
2 3/ /

ln 1 /    , for / 1.
2 3

r n r nr r n r n
n

 + = − + − < 
 

  

( ) ( ) ( )2 3Because /   is small, we can ignore terms  involving / , / , .
Thus, 

r n r n r n etc  

( ) ln 1 / .

Therefore, formula (4) becomes

r r n
n

 + ≅ 
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ln ln .
( / )ln 1

The m-fold approximate time formula becomes
ln ,  in years.                                                                                             (8)

m mt
r n r nn
n

mt
r

= ≅
 + 
 

≅

When m=2, we get the famous approximate double time formula (the Rule of 70) 

as follows: 

𝑡 ≅ ln2
𝑟

= 0.6931
𝑟

 , or 𝑡 ≅ 0.70
𝑟

, which leads to  

𝑡 = 70
100𝑟

 in years.           (9)  

Note 1: The m-fold approximate time in formulae (8) and (9) are indifferent to the 

compounding frequency, n.  

Note 2: The m-fold t approximate and the exact time formulae for continuous 

compounding are identical: 𝑡 = ln𝑚
𝑟

      in years. 

Table 1 shows extensions of the Rule of 70 to m-fold approximate time rules.  

 

 

Table 1: The m-fold approximate compound interest time rules in years, where r is 

the annual interest rate. 

m ln𝑚
𝑟

 
m-fold approximate 

time rules in years 

r = 0.02 

years 

r = 0.05 

years 

r = 0.10 

years 

r = 0.20 

years 

1.5 0.40547/r 40/100r    rule of 40 20 8 4 2 

2 0.69314/r 70/100r    rule of 70 35 14 7 3.5 

2.5 0.91629/r 92/100r    rule of 92 46 18.4 9.2 4.6 

3 1.09861/r 110/100r  rule of 110 55 22 11 5.5 

4 1.38629/r 140/100r  rule of 140 70 28 14 7 

5 1.60944/r 160/100r  rule of 160 80 32 16 8 

6 1.79176/r 180/100r  rule of 180 90 36 18 9 

7 1.94591/r 195/100r  rule of 195 97.5 39 19.5 9.75 
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8 2.07944/r 208/100r  rule of 208 104 41 .6 20.8 10.4 

9 2.19723/r 220/100r  rule of 220 110 44 22 11 

10 2.30259/r 230/100r  rule of 230 115 46 23 11.5 

 

 

 

5 Compound Interest Time Calculations in Antiquities   

Mesopotamia (Ancient Iraq in southwest Asia) is the land where the 

Sumerian, Akkadian, Babylonian, and Assyrian ancient civilizations had 

flourished and made significant imprints in the human history, especially in 

mathematics. Excavated cuneiform writings revealed that Mesopotamians handled 

problems involving arithmetic and geometric progressions, square and cube roots 

of integers, quadratic and simultaneous equations, Pythagoras theorem 

applications, areas and volumes of geometrical figures, and compound interest 

calculations. References on Mesopotamian (or Babylonian) mathematics include 

Baqir [1, written in Arabic], Neugebauer and Sachs [2], Nuegebauer [3], and 

Robson [4]. Boyer [5] is a general book on the history of mathematics. Roux [6] 

gives a short history of Mesopotamia. 

In this article, we discuss two Mesopotamian artifacts that involve compound 

interest transactions; specifically doubling time calculations. Mesopotamians used 

exponential tables and their inverses (logarithmic tables) to handle compound 

interest calculations. Annual interest rates of 10% up to 33% on loans were 

common in Mesopotamia in early periods. Usually, archeologists assign 

alphanumeric identifications to the cuneiform artifacts they excavate. For example, 

AO stands for “Antiquite` Orientales” in the Louver in Paris and VAT stands for 

“Vorderasiatische Abteilung, Tontafeln” in Staatliche Museen in Berlin. 

In Section 5.1, we discuss cuneiform tablet AO 6770 that calculates the time 

for a principal to double at 20% APR compounded annually. In Section 5.2, we 

discuss cuneiform tablet VAT 8528 that calculates the time for a principal to grow 
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64 folds when the frequency of compounding occurs once every five years 

(quinquennial).  

 

 

5.1  Tablet AO 6770 (c. 2000 BCE, in the Louvre in Paris) 

In effect, Tablet AO 6770 asks the question: “How long does it take a 

principal to double at 20% APR compounded annually?”  

We will discuss the present-day, the Rule of 70, and the Mesopotamian solutions 

to the above question, in that order.  

The Present-day Exact Solution:  

Substitute r = 20% = 0.20 and n = 1 in the exact doubling time formula in (6) 

to obtain 

t =
ln 2

𝑛 ln �1 + 𝑟
𝑛�

=
ln 2

ln �1 + 0.20
1 �

=
ln 2

ln(1.20) =
0.6931
0.1823

= 3.80 years. 

Thus, the present-day exact answer is 3.80 years, which is equivalent to 3 years, 9 

months and 18 days.  

The Rule of 70 Approximate Solution:  

Substitute r = 0.20 in the rule of 70, formula (9), to obtain  

𝑡 = 70
100𝑟

= 70
20

= 3.5 𝑦𝑒𝑎𝑟𝑠.  

Thus, the rule of 70 answer is: 3 years and 6 months. 

The Mesopotamian Solution:  

The Mesopotamian solution in Tablet AO 6770 reduced the question to that 

of finding the time t in the exponential equation 2 = �6
5
�
𝑡
. This is equivalent to 

our present-day formula  𝐹 = 𝑃 �1 + 𝑟
𝑛
�
𝑛𝑡

, in which = 2𝑃,𝑛 = 1, 𝑎𝑛𝑑 𝑟 =

0.20 = 1
5
 . As evidenced by excavations, the Mesopotamians had calculated tables 

of powers of various numbers. By searching through the power tables of �6
5
�, they 
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found that 2 = �6
5
�
𝑡
 leads to values of t falling between 3 and 4. Through 

interpolation between t = 3 and t = 4, their answer was 3 years and 9 4
9
 months. 

This Mesopotamian answer is equivalent to 3 years, 9 months, 13 days and 

one-third of a day. 

It can be seen that the Mesopotamian answer of “3 years, 9 months, 13 days and 

one-third of a day” is very close the present-day exact answer of “3 years, 9 

months and 18 days.” For further reading on tablet AO 6770, see Curtis [7] and 

Muroi [8]. 

 

 

5.2  VAT 8528 (c. 2000 BCE, in Berlin)   

Tablet VAT 8528 deals with finding the time required for a principal invested 

at 20% APR to grow 64 folds when compounding occurs once every five years. It 

asks the question:     

“If you lend one mina of silver at an annual interest rate of 12/60 of a mina per 

year, how long does it take to be repaid as 64 minas?” 

In VAT 8528, the Mesopotamian compounded interest by capitalizing the interest 

only when the outstanding principal doubled. In VAT 8528 the annual interest rate 

is given as   12
60

= 20% . The basic simple interest scenario formula is 𝐹 =

𝑃(1 + 𝑟𝑡). Substitute 𝐹 = 2𝑃, 𝑟 = 0.20 to obtain 2 = (1 + 0.20𝑡). Solving, we 

see that doubling the standing principal occurs every 𝑡 = 5 𝑦𝑒𝑎𝑟𝑠. 

Present-day Exact Solution: 

Accounting for the fact that compounding occurs once every five years, the 

question in VAT 8528 becomes: “How long will it take a principal to grow 

64-folds if compounding occurs once every five years at a 20% APR?”  

Substituting m = 64, r = 0.20, n = 1/5 in formula (4), we obtain 

  𝑡 = ln𝑚

nln�1+𝑟𝑛�
= ln64

1
5ln�1+

0.20
1 5⁄ �

= 5 ln64
ln2

= 5(4.1588)
0.6931

= 30 𝑦𝑒𝑎𝑟𝑠 .  



10                                     Compound Interest Doubling Time Rule  

The m-Fold Approximate Time Rule:   

Substitute m = 64 and r = 0.20 in formula (4), the m-fold approximate time 

rule to obtain 

𝑡 ≅ ln𝑚
𝑟

= ln 64
0.20

= 4.1588
0.20

= 20.8 𝑦𝑒𝑎𝑟𝑠. 

This approximation of 20.8 years is very far off the exact answer of 30 years. The 

reason for this gross discrepancy is that the approximation ln �1 + 𝑟
𝑛
� ≅ 𝑟

𝑛
  

requires  𝑟
𝑛

< 1  . In our case,  𝑟
𝑛

= 0.20
1 5⁄

= 1.0   and ln �1 + 0.20
1 5⁄

� =  ln 2 =

0.6931 are quite different. The time approximation rules may become invalid 

when the compounding frequency is less than once year.  

The Mesopotamian Solution:   

The Mesopotamian solution in Tablet VAT 8528 involves reducing the 

question to that of solving the exponential equation 2
𝑡
5 = 64. One can arrive at 

this equation by substituting 

 𝐹 = 64,𝑃 = 1, 𝑟 = 0.2,𝑎𝑛𝑑 𝑛 = 1
5
  in formula (1) to obtain: 

 𝐹 = 𝑃 �1 + 𝑟
𝑛
�
𝑛𝑡

 

 64 = �1 + 0.2
1 5⁄
�
𝑡
5 

 64 = (2)
𝑡
5 . 

Then the Mesopotamians searched their power tables to look up the power of 

2 such that  

2
𝑡
5 = 64. Knowing that 22 = 4, 23 = 8, 24 = 16, 25 = 32, and 26 = 64, leads to 𝑡

5
= 6. 

Thus the solution, t = 30 years. Again, the Mesopotamian solution of 30 years 

coincides with the present-day exact time solution. For further details on VAT 

8528 (and a similar tablet VAT 8521), see Neugebauer [9] and Muroi [10]. 
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